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Propagation of spherical shock waves in stars 
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Department of Applied Mathematics, 
Weizmann Institute of Science, Rehovot, Israel 
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SUMMARY 
Propagation of spherical shock waves through self-gravitating 

polytropic gas spheres such as stars, caused by an instantaneous 
central explosion of finite energy E, is discussed theoretically. 
The problem is characterized by two lengths R,, L, where 

R, = (6)1'3, L = (2:pTG) - "" 
p,, po and C, are the values of pressure, density and velocity of 
sound at the centre of the equilibrium pre-explosion state, and G is 
the constant of gravitation. R, and L are scales connected with the 
power of the explosion and the dimensions of the star respectively, 
and their ratio A = ROIL has a fundamental significance. A 
solution especially suitable in the case of A = O(1) is developed 
in the form of power series in RIR, (R is the distance between the 
shock front and the centre) by a method similar to that used in 
previous papers by the present author (1953, 1954). An approxi- 
mation to this solution is carried out up to the term in R3. In 
particular, the velocity of the shock wave U is found to be 

G = 1*30(~)-3"{ 1 +0*41A2(&)' +0*57($)3 +...} 
for the case of y = 1.4, where y is the ratio of specific heats. 

1. INTRODUCTION 
The purpose of the present paper is to investigate the propagation of 

spherical shock waves through gravitating gas spheres, such as stars, 
caused by an instantaneous central explosion of finite energy. The problem 
has previously been treated by Kopal(l954) and Sedov (1  954) €or the case 
of constant shock front strength in a special distribution of density in the 
pre-explosion state. The case of variable shock strength is discussed by 
Lidov (1955) and Rogers (1956). We consider the problem more generally, 
with variable shock strength and the pre-explosion state simply given by the 
equilibrium equation of self-gravitating polytropic gas spheres. In the 
case of uniform pre-explosion states, the author (1953, 1954) discussed the 
problem by a method of constructing the solution in power series of U-2, 
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where U is the propagation velocity of the shock front. A similar method 
is also applicable to the present problem, if we use R (the distance between 
the shock front and the centre) in place of Up2. We cannot now use U-2 as 
an independent variable as was done in the previous papers, because U is 
no longer necessarily a monotonically decreasing function of increasing R, 
but may even increase as a result of decreasing pressure, density, etc. in the  
equilibrium state, and would then cease to be single-valued. An approxi- 
mation to this type of solution is carried out up to the term in R3. The 
terms in Ro and R3 can be found from the results of the previous papers, 
since they contain no effect of non-uniformity in the pre-explosion state. 
Further, the term in R vanishes automatically, and the effect of non-uniform 
pre-explosion distribution comes only from the term in R2 in this approxi- 
mation. Since U-2 = O(R3), this just corresponds to the second approxi- 
mation in the previous paper (1954) including terms up to V2. 

The present problem is characterized by two lengths R,, L, where 

and E is the energy of explosion, p,,  p, and C, are values of pressure, density 
and velocity of sound at the centre in the equilibrium pre-explosion state, 
and G is the constant of gravitation. R, represents a scale connected with 
the effective range of the power of the explosion and appears also in the 
previous papers (1953, 1954). L represents, on the other hand, a length 
connected with the dimensions of the star. The ratio A of these two lengths 
defined as 

113 
A = ROIL, or A2 = (&) p, GC;2p;213E2/3, (3) 

has a fundamental significance. The present theory is specially suitable 
for the case of A = 0(1),  that is, the case in which the effective range of the 
explosion is of the same order of magnitude as the scale of the star. In  the 
case of a weak explosion (A < l), the theory is still valid but reduces to that 
for the case of the uniform pre-explosion state ; it then seems to be more 
suitable to consider the problem by Whitham's method (1953). In the 
case of A % 1, we have a very strong explosion, far bigger than the star itself, 
and it is clear that this phenomenon requires completely different formu- 
lation. 

We formulate in $ 2 the fundamental system of equations given by 
equations of motion, conservation of the total explosion energy and boundary 
conditions of the shock front. The solution in power series of R is developed 
in § 3, and the term in R2, which is the only new one required for the fourth 
approximation, is found by numerical integration in $4. In $ 5  and $6 ,  
miscellaneous results obtained from this fourth approximation to the 
solution are discussed. 
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2. 1'UIYDAMEXTAL EQCATIONS 

The  equations governing the spherically symmetrical flow of a poly- 
tropic gas of adiabatic index y under the influence of its own gravitation 
are (Kopal & Lin 1951) 

(4 )  
1 i3p Gnz 

_. 
D ti - - - - - - - 
Dt p ar I 2  ' 

am 
a I  
- = 4 T Y 2 P ,  

= 0,  D(Pp-') 
Dt 

where m(r, t ) ,  W(Y, t) ,  P ( Y ,  t )  and p(r,  t )  dcnote respectively the mass inside a 
sphere of radius I ,  the velocity, the pressure and the density at  a distance Y 

from the origin at time t ,  and the expression DIDt denotesDlDt = a/& + zd/C'v. 
By means o f  cquation (5), equation (7) transforms into 

For the equilihrium state where ZI = 0, a/& = 0, y e  put 

p =p'(R),  p = p'(R), m = m'(R),  . Y = 12;  (0.)) 
thus equations (4), (6) and (7) are reduced to 

while equations (5) and (8) give merely the relations p = p' and p = p' in 
this case. 

For the radius of the shock front it will be convenient to use the same 
symbol R as above. This R is a function of t and connected with the pro- 
pagation velocity at the front U by the relation 

dRldt = U. (11) 
At the shock front ( r  = R), we have the following Rankine-Hugoniot 

conditions : 

where C is the sound velocity in the equilibrium state and is given by 
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Since we consider the case of an instantaneous explosion of energy E, 
the equation of energy may be written 

(14) 
In place of r,  t ,  we now introduce new independent variables x, z defined 

by 
Y 

= z ,  
R - 

I? = x, Ro 
and express the quantities u, p ,  p, m ; p', p', m' as follows : 

P m 

Po m0 

U g(X, x ) ,  - = Dh(x, x), - = M ~ ( x , x ) ,  (16) 
Po 

P' m' 

PO Po m0 
where f, g, h, i ;  P, D,  M are non-dimensional new variables. 
(16) and (17), we have 

= P(x), - = D(x), - = M(x) ,  m, = i npo  R,3, (17) 

Using (15), 

a i a  D U  
(18) - -  - - -  ar R a x ,  = n ( ( f - X ) & + z & ] *  

(f-.)- + z -  + - --f = - f 2 - 2 & 2  -- 

ax J p  h, 

We now substitute (lS), (16), (17) and (18) into the fundamental equa- 
Then (4), (5) ,  (6) and (8) become tions (4), (5), (6), (8), ( l o ) ,  (12) and (14). 

(19) 

(20) 

(21) 

af a-f d u  c2 M i 
ax az U d z  yh ax u2 z xa, 

af 2f ( f - x ) - - + - -  +-  - = - - - _  
hax h az D dz ax x' 
l a h  z a h  z dD 

ai D - = 3x3-  2 

1 ag z ag z dD 2 z d U  
g ax g az D dz U dx 

(f-.)- - + - - + - - + - - = 

while equations (10) become 

(23) - -  dM - 3 9 0 ,  P I F  = 1, 1 dP 2yA2 + - M  = 0, 
2 2  dz 

where we have used (l), ( 2 )  and ( 3 ) .  The boundary conditions (12) become 

y + l  y + l D  ' 

(24) h(1,z) = Y&{l+-(-)}  2 c2-1 , 

ED2 /:($hp+ 5 ) x 2  dx-2yA2MDz2 

i ( 1 , z )  = 1 ,  y - 1  y-1 u 
while the energy equation (14) gives 

coa 

z 
P 
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If we write 1: ($hf” + * ) x 2  dx = J, ji hix dx = K ,  

z 
P 

our equation is reduced to 

or = z3JD( 1 + I +  2yA2MDz2K)-l. 
U2 

3.  THE SOLUTION IN POWER SERIES OF z 

Following the method used in the earlier paper (1953), we construct the 
At first we find the solution for the equi- 

Eliminating M and P from (23), we have 
solution in power series of z. 
librium state expressed by (23). 

~ ( Z Z D Y - ~  %) dD +6A2z2D = 0, 
dz 

from which we get 

(27) 
13 - 57 

10 
D = 1 - A 2 z 2 + -  As$+ ...; 

and then, from (23) and (13), P, M and C are given by 

P = 1 - y ~ 2 X 2 + ; y ~ 4 ~ +  ... , (28) 

In figure 1, the expression (27) for the case y = 1.4 is compared with the 

We now assume 
exact solution of (26) which was given by Eddington (1930). 

(31) 1 f ( x ,  Z) = f o  + zf1 + zY2 + z ” f 3  + .-., 
g(.,z) = go+~gl+z~g,+~~g3+..., 

h(x, Z )  = ho + zh, + z2h2 + z3h3 + ..., 
i(x, z) = io + zi, + z2i2 + z3i3 + ..., J 

wheref,(x), g,(x), h,(x), i,(x) (v = 0, 1 ,  2, ...) are unknown functions to be 
determined. 

We insert expressions (27), (28), (29), (30) and (31) in equation (Z), 
and then obtain 

J = J& 1 + zal + z2a2 + z3a3 + ...), (32) 
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where 

J ,  = j : ($hO f:+ u ) x 2  dx, 
Y - 1  

a lJo  = I:( 5 h, fi + yfo ho f l  + a ) x 2  dx, 
Y-1 

U 2 J o  = Jl( f h, f o 2  + rfo ho f 2  + $fI(hO fl + 2fo h,) + gp_>x2 dx, 
0 Y-1 

a3 J O  = i'(; h3 fi + YfO hO f 3  + f f l ( h l  f l  + 'f0 h2) + 
J O  

44 1 

(33) 

0 0 . 5  I *O A t  

Figure 1 .  Comparison of approximate density distributions for y = 1.4 with exact 
one. Curve 1 ,  l-(Az)' ; curve 2, ~ - ( ( A z ) ~ + O . ~ ( A Z ) ~ ;  curve 3 ,  exact 
solution. 

where KO = l l h o i o x  dx, 
0 

1 

- 0  
1 

&KO = [ (h, io+hoil)x dx, 

KO = I (h2i0 + ho i2 + h, il)x dx, 
0 J 

(34) 

(35) 
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} (37) 
I = -{- 1 - 2y-1 - yA29+ - (  4Y 4y-3)A424+ ... , 

y-1 3 5 35 

Using (32), (33), (34) ,  ( 3 5 ) ,  ( 36 )  and (37 ) ,  we finally get from (25) 

-a1A2 x 3 +  ... , (38) tcg- - - i i  1 1  
- = Joz3 1+cc,x+(a2-A2)z2+ G? 
U2 { ( 3 Y - 1  

and hence 

+$a1(cc;-3a2) x3+ ... , i 
= - ;(1+ s, + s,x2+ s, 23 + ...), 

where 

+ ;a,(a:- 3a2). 
1 1  6 = 1  3a1, 6, = g(a2-A2-+a:), 6, = a,- - 
Y-1 

(39) 

Equation (38 )  gives the relation between the propagation velocity U and the 
position R = R, z of the shock front, if we know the values of constants 
J,, ccl, a,, ... for a given A .  

Now, substituting (27), (28), (29), (30), ( 3 1 ) ,  (38) and (39) into (19)’ (ZO), 
(21) and (22), and comparing the coefficients of the same powers of z on both 
sides of (19), (20), (21) and (22), we get the following system of equations: 

for  the term independant of z 

gb ( f o - x ) f ; - ; f o  = - - 
Yho ’ 

h;, 2 
( f o - x ) -  = -fo’- - f  

h0 x O’ 

i(r = 3x2ho; 

f o r  the$rst power of x 

( f o - x ) ( 2 > ‘ + f ;  = - (Z + S ) f l -  - hl 

( f 0 - 4 p l ) + y f t  = -(g + %)fl- g1 - +36,, 
h0 ’ 

go  go 
ii = 3x2h, ; J 
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i 
where the primes (') denote differentations with respect to x. 

From the boundary conditions (24),  we have in a similar manner 

io(l) = 1, (44) 2 2Y Y+l 
y - 1 '  hO(1) = . lo ( l )  = - y +  1 3  go(1) = y+l , 
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flu) = 0, g1V) = 0, hl(1) = 0, il(l) = 0, (45) 

2 *+J i3(1)  = 0. f3(1)  = - -Jo, gS(1) = - '-lJo, h3(1) = - 

f 2 V )  = 0, g2(1) = 0, h2(1) = 0, i2(l) = 0, (46) 

(y-1)2 O' Y + l  Y + l  

(47) 

The first step in the solution of the problem is to solve the system of 
differential equations (40) about fo(x), go(x), ho(x), i,(x) with the boundary 
conditions (44), and to insert this solution in the first equation of (33) .  
Then we have the first approximation to the solution in the form 

2 (2) = J ,  23. 

Since io enters only in the fourth equation in (40), we can findf,, go, h, 
separately from the first three equations. It is clear that this procedure is 
precisely the same as that of the first approximation in the case of a 
uniform pre-explosion state, which was first developed by Taylor (1950). 
The solutions fo(x), go(x), ho(x), J, were, in the previous paper (1953), 
written asf(O)(x), g(O)(x>, h(O)(x), J,. The value of J ,  for y = 1.4 is 0.596, 
and some values off,, go and h, are shown in table 1. 

The second step is to find the functionsf,(x), gl(x) ,  h,(x), il(x) and a 
constant 6,. For this purpose we use the system of  differential equations 
(41), with the boundary conditions (45) and the integral condition (the 
second equation of (33)) with the relation 6, = gtc, from (39). The equations 
(4  1 )  and the integral condition are, however, linear and homogeneous, about 
f l ,  g,, h,, i,, 6,, and so we have simply 

fl(x) = 0, gl(x) = 0, h,(x) _= 0, il(x) = 0, 6, = a, = 0. (49) 

Equations (49) lead to a simplification of the equation for the third step, 
and we get from (42) and (46) 
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and from ( 3 3 )  and (39) 

( 5 1 )  

8 2  = g(X2-A’ ) .  (52) 

-1 1 

0 .  
~2 J O  = J x + Y ~ O  hOf2 + y-l g,)xZ dx, 

By means of (50) and (52), we can find the functionsf,(x), g2(x), h2(x), &(x) 
and the constants cc2, 6,. 

Equations for the fourth step are also simplified by means of (49), and 
we get from (43) and (47) 

The solution is given below in $ 4 .  

ii = 3x2h3, 

2 Y - 1  2(Y + 1) J,,  fdl) = - g3(1) = - - + l J 0 ,  h3(1) = - -- 
Y + l  (Y - 

i3(l) = 0, 

and from (33) and (39) 

where we have used equations (40) forf,, go, h,. 
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By comparing this system of equations (56) for $,, $,, x,, i,, A, with that 
for 4,$, x, A, expressed by (2), (3), (4), (5) and (6) in the previous paper (1954), 
we can find that in the case of CI = 2 (spherical wave) they are precisely the 
same except for the equation for i,. 

The value of A, for y = 1.4 is - 1.918, and some values of +,, $,, x3 are also 
given in table 1 .  

x f O ( 4  go(%) hO(4 +3(4 43(4 x3(4 

Then we get 
$3(4 = C(4, $ 3 ( 4  = +(x), X , ( X )  = x(4, A, = 4. (57) 

1.00 0.833 1.167 6.000 -5.000 -0.143 -5.000 
0.95 0.751 0.760 2.464 -3.941 0.779 0.879 
0.90 0.685 0.595 1.234 -3.603 0.475 2.567 
0.80 0.584 0.471 0.392 -3.45 -048 3.32 
0.60 0.429 0.427 0.041 - -0.51 - 

0.00 0.000 0.426 0.000 -3.5 -0.53 3.5 

Table 3 

We have now arrived at the fourth approximation to the solution, 
including the terms up to z3. Since U-2 cc z3(l + ...) by (38), this fourth 
approximation corresponds to the second approximation of the previous 
paper (1954); because, in the former case, the solution was expanded in 
powers of y = ( C / U ) 2 ,  where C denoted the velocity of sound in the uni- 
form atmosphere. The fact that we can express the coefficient of 2, in the 
present solution in terms of the coefficient of y in the previous result is due 
to this reason. But it must be remarked that the errors involved in the two 
approximations are not the same, since the error in the present case is 
O(z4), while in the previous case it is O(y2), i.e. O(z6). Thus, to have the 
same error, we must proceed to the sixth approximation. The non-uniform 
pre-explosion state, caused by gravitation and expressed by the constant A, 
does not affect the terms in zo and z3, but appears separately in the term of 
z2 in the fourth approximation. I n  the case of A = 0, equations (50) and 
(52) become homogeneous, and the term in z2 vanishes as in the case of the 
term in z ; the solution then reduces to that in the case of a uniform pre- 
explosion state. 

4. SOLUTIONS FOR fz, g,, h,, 6, 
The 

procedure is similar to that of the second approximation (the term in y )  
developed in the previous paper (1954). 

so that (50) and (52) are reduced to 

We now solve equations (50) and (52) to the third approximation. 

We put 
f2 = A 2 ( X - f 0 ) $ 2 ,  g2 = A2go $2, h2 = A2ho x 2 ,  a2 = A2@2, (58) 
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6 ,  = $42(6,- l ) ,  J 
where we have used (40). Since i2 appears only in (62) ,  we can exclude it. 
The problem is then to solve the system of differential equations (59), (60 )  
and (61 )  for 42, +2, x2 with the boundary conditions (63),  and to put this 
solution, which includes u2, into equation (64 )  and determine u2. It is 
remarkable that A has no role in this process. 

Just as in the previous papers (1953, 1954), we have an intermediate 
integral from equations (60 )  and (61).  Let us perform the operation 
( 5 y  - 3 )  x (60 )  - 5 x (61)  ; we have 

Integrating this and inserting the condition (63 )  to determine the integration 
constant, we obtain the relation 

3 4 , - 5 * 2 + ( 5 y - 3 ) x 2 + 5 ~ 2 - 5 y + 3  = (5u2-5y+3)  exp( \ --). (65) 

34; - 5& + (5y - 3)xk = 2{3#2 - 5#2 (5y - 3)Xp + 5U2 - 5y + 3). 

x 2 d x  
. l  x-fo 

Eliminating 4; from (59 )  and (61) ,  we have 

where 
& = + b$2 + cx2 + em2 + d ,  (66 )  

c = fi+- - f o  ) f ,  ( 2 x - f o  
Now we split up +2, 9b2, x2 into two parts 

and substitute these in (66) ,  (61) ,  (65) ,  (63) ,  (64).  The equations split up 
into two independent systems for 421, z,b21, xZ1 and +22, #22r xZ2 respectively, 
viz. 

6 2  = 4 2 1  + 0 2  4 2 2 ,  $2 = *21+ 0 2  $22, x 2  = X 2 l +  u 2  x 2 2 ,  (67)  

*& = 4 2 1  + w 2 1 +  cx21+ 4 
1 1 

6hl = -[GI Y - x-fo {3(Y - 1)6z1 + 2*21}]. 
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For y = 1.4, (68) and (69) were integrated numerically from x = 1 with the 
initial values q521 = i,h21 = x21 = $22 = #22 = xZ2 = 0. From x = 1 to x = 0.96, 
the Runge-Kutta method was used, taking the steps of the numerical 
integration as 0.02. In the remaining part of the range, the Levy method 
was applied, again with a step of 0.02. Inserting these values of 7 ! ~ ~ ~ ,  $21, 

xZl ; 422, $22, xZ2 into (70), we get the value 

u2 = 0.182, with Jo = 0.596, A, = - 1.918. (71) 

Figure 2. The solutions dz, #z, xz for y = 1.4. 
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Using this value of u2, c # ~ ,  t+hz7 xz were determined finally by (67) ; they are 
tabulated in table 2, and are shown in figure 2. 

x 6,(4 
1.00 0.000 
0.98 0.037 
0.96 0461 
0.94 0.076 
0.92 0.086 
0.90 0.091 
0.88 0.094 
0.86 0.097 
0.84 0.097 
0.82 0498 
0.80 0.098 
0.78 0.10 
0.76 0.10 
0.74 0.10 
0.72 
0.70 
0.68 
0.66 

YJJz(4 x&) 
0.000 0.000 
0-081 0.232 
0.124 0.386 
0.146 0.495 
0.157 0.572 
0.159 0.629 
0.158 0.671 
0.155 0.704 
0.151 0.730 
0.147 0.752 
0.143 0.764 
0.14 0.78 
0.14 0.80 
0.14 0.81 
0.13 0.81 
0.13 0.82 
0.13 0.82 

0.82 

Table 2 

5. VELOCITY-DISTANCE CURVES AND TIME-DISTANCE CURVES 

(s)2 = b,x3{l +(a2- 1)A2x2+JOA39+ ...). 

By use of the values J,, u2, A, given in (71), and with R/R, in place of x, this 
equation becomes, for y = 1-4, 

Inserting (49), (55), (57) and (58) in equation (38), we get 

or 

Velocity-distance curves (U-R curves) given by (72) are shown in figure 3 
for A2 = 0, 1, 2, 5 and 10. 

We can see in figure 3 that A has the effect of preventing U from de- 
creasing, and this effect increases with larger A as expected. It is interesting 
to consider UjC, the strength of the shock wave, which is obtained by 
multiplication of (72) and (30). In  the case of y = 1.4, we have 

or 

F.M. 

(g)2(g)2 = 0.596($j3{l - l.22A2(;)' - 1.14(%) R 3 ... '1 r 7  

- U C = 1 . 3 0 ( ~ ,  R'-3'2 1 ' 1 + 0.61A2( g)2 + 0.57( g)' ...}, (73) 

2 G  
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U 
co 
- 

20 

10.- 

from which we can see that A is more effective in maintaining the strength 
of the shock wave. 

Using the expressions (73) and (12), we can deduce relations between 
the radius of the shock front R and quantities such as pressure and density 
at the shock front. T o  obtain the most interesting of these relations, we 
consider the temperature T at the shock front; we have 

- 

where T' denotes the value in the equilibrium state. 
where To denotes the value of T' at the centre, we have finally 

Since T'/To = (C/Co)2, 

T 
TO 

I=- 

= 
0 0 . 2  0-4  0.6 0.8 1.0 R 

Re 

0 

Figure 3. Velocity-distance curves for Az = 0, 1, 2, 5 and 10. 

In  this case, A does not have so much effect. The distance-time relation 
can be obtained from an integration of (72) with use of the relation (11). 
This gives 

Codt = L( R)3'2{l-o-41A2(G) R 2  -0.57(g)3...}dR 
1.30 & 

and we get 

- co = 0.308($)i'2{l - O.23_lZ( $)2 - 0*27( $)3 ...>. (75) 
RO 

This equation is represented in figure 4 for A2 = 0, 1, 2, 5 and 10. 
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0 0:2 0.4 0.6 0.8 
A 

A0 
z =- 

Figure 4. Time-distance curves for AZ = 0 ,  1, 2, 5 and 10. 

If we combine (75) and (74), we can get a relation between the temperature 
T and the time t .  

6. DISTRIBUTION OF VELOCITY, DENSITY AND TEMPERATURE 

The velocity u, pressure p ,  density p and temperature 0 behind the 
shock front are given by (16), (31), (27), (28), (72), (73), (49), (55) and (58), 
that is, u u  _ -  - - {fo + (X -fO)(A2z242 + 0 . 5 9 6 ~ ~ 4 ,  ...)), 

c o  cb 
U 
- = 1 . 3 0 ~ ~ ' ~ (  1 + 0*41A2z2 + 0 . 5 7 ~ ~  + ...), co 

P = 1 - 1*4A2z2+ ..., 

6 P Po 
To Po P 

x -. - = -  

(77) 
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A special interest attaches to the variation of p and p with time, as shown in 
figures 5 and 6 for the case of A2 = 2. In  figure 5 distributions of p/po 
when x = R/R, = 0.1, 0.3, 0.5, which correspond to Cot/Ro = 0.001, 0.014, 
0.046 respectively, are shown with the initial pre-explosion distribution 
D = p’/po = 1 - 2z2. We can see that pipo increases to several times the 
initial value D at the shock front, and decreases to zero toward the centre. 
This decrease is so rapid that there is always a region of almost vanishing 
density near the centre, and this region is also expanding with time. The 
same kind of distributions of x3p/po for the same values of z and the initial 
distribution P = p’ /p ,  = 1 - 2 . 8 ~ ~  are shown in figure 6. In  this case, the 
increase of pip, from P at the shock front is very large, especially for small z ,  

Figure 5 .  Distributions of density for A2 = 2 at various stages. Curve 1, initial pre- 
explosion distribution D ;  curve 2, distribution of p / p o  at z = R/Ro = 0.1 ; 
curve 3,  distribution of p / p o  at z = R/R, = 0.3 ; curve 4, distribution of p / p o  
at z = R/R, = 0.5. 

‘ l . R  

Figure 6. Distributions of pressure for A’ = 2 at various stages. Curve 1 ,  initial pre- 
explosion distribution P; curve 2, distribution of z3p/p0  at z = A/RO=0.1 ; 
curve 3, distribution of z3p /p0  at z = R/Ro = 0.3;  curve 4, distribution of 
z3p /p ,  at z = R/Ro = 0.5, 
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and is about two thousand for x = 0.1. The  value of x2pplpo is shown in 
the figure, though P is depicted without change. Corresponding to the 
region of vanishingly small density, we now have the constant pressure 
region of about the same size. This value of constant pressure changes 
rapidly with x, being roughly proportional to x-3 or ( U/C)-2. The distri- 
bution of temperature, which can be obtained from (79), using the above 
values of pip,  and p/po, then has a region of almost infinite temperature 
corresponding to the above regions. 
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