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Propagation of spherical shock waves in stars

By AKIRA SAKURAI*

Department of Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

(Recerved 26 April 1956)

SUMMARY
Propagation of spherical shock waves through self-gravitating
polytropic gas spheres such as stars, caused by an instantaneous
central explosion of finite energy E, is discussed theoretically.
The problem is characterized by two lengths R,, L, where

E \13 [ 3C3\e
Rom (i) 4= (o)

Po» Po annd C, are the values of pressure, density and velocity of
sound at the centre of the equilibrium pre-explosion state, and G is
the constant of gravitation. R, and L are scales connected with the
power of the explosion and the dimensions of the star respectively,
and their ratio 4 = Ry/L has a fundamental significance. A
solution especially suitable in the case of 4 = O(1) is developed
in the form of power series in R/R, (R is the distance between the
shock front and the centre) by a method similar to that used in
previous papers by the present author (1953, 1954). An approxi-
mation to this solution is carried out up to the term in R3. In
particular, the velocity of the shock wave U is found to be

U R \32 a1 a2 RN\ L ocnfRN?
c, = 130<E> {1+O41A <Ro> +0 57<R0> +}

for the case of y = 14, where y is the ratio of specific heats.

1. INTRODUCTION

The purpose of the present paper is to investigate the propagation of
spherical shock waves through gravitating gas spheres, such as stars,
caused by an instantaneous central explosion of finite energy. The problem
has previously been treated by Kopal (1954) and Sedov (1954) for the case
of constant shock front strength in a special distribution of density in the
pre-explosion state. The case of variabfe shock strength is discussed by
Lidov (1955) and Rogers (1956). We consider the problem more generally,
with variable shock strength and the pre-explosion state simply given by the
equilibrium equation of self-gravitating polytropic gas spheres. In the
case of uniform pre-explosion states, the author (1953, 1954) discussed the
problem by a method of constructing the solution in power series of U-2,

* Weizmann Fellow, on leave from Tokyo Electrical Engineering College.



Propagation of spherical shock waves in stars 437

where U is the propagation velocity of the shock front. A similar method
is also applicable to the present problem, if we use R (the distance between
the shock front and the centre) in place of U2, We cannot now use U2 as
an independent variable as was done in the previous papers, because U is
no longer necessarily a monotonically decreasing function of increasing R,
but may even increase as a result of decreasing pressure, density, etc. in the
equilibrium state, and would then cease to be single-valued. An approxi-
mation to this type of solution is carried out up to the term in R%. The
terms in R® and R® can be found from the results of the previous papers,
since they contain no effect of non-uniformity in the pre-explosion state.
Further, the term in R vanishes automatically, and the effect of non-uniform
pre-explosion distribution comes only from the term in R? in this approxi-
mation. Since U2 = O(R?), this just corresponds to the second approxi-
mation in the previous paper (1954) including terms up to U2
The present problem is characterized by two lengths R,, L, where

E \U3
R = (47TP0> ’ o

3C3 \12
b= (27"Po G> ’ @

and E is the energy of explosion, p,, p, and C, are values of pressure, density
and velocity of sound at the centre in the equilibrium pre-explosion state,
and G is the constant of gravitation. R, represents a scale connected with
the effective range of the power of the explosion and appears also in the
previous papers (1953, 1954). L represents, on the other hand, a length
connected with the dimensions of the star. The ratio 4 of these two lengths
defined as

7 \1

/3
A= RjL o 4= (5)" 5 GCyrpy e, )

has a fundamental significance. The present theory is specially suitable
for the case of A = O(1), that is, the case in which the effective range of the
explosion is of the same order of magnitude as the scale of the star. In the
case of a weak explosion (4 < 1), the theory is still valid but reduces to that
for the case of the uniform pre-explosion state; it then seems to be more
suitable to consider the problem by Whitham’s method (1953). In the
case of 4 > 1, we have a very strong explosion, far bigger than the star itself,
and it is clear that this phenomenon requires completely different formu-
lation.

We formulate in §2 the fundamental system of equations given by
equations of motion, conservation of the total explosion energy and boundary
conditions of the shock front. The solution in power series of R is developed
in § 3, and the term in R?, which is the only new one required for the fourth
approximation, is found by numerical integration in §4. In §5 and §6,
miscellaneous results obtained from this fourth approximation to the
solution are discussed.
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2. 'UNDAMENTAL EQUATIONS
The equations governing the spherically symmetrical flow of a poly-
tropic gas of adiabatic index y under the influence of its own gravitation
are (Kopal & Lin 1951)

W 4, (6)
Q%";) -0, | 7)

where m(r, 1), u(r, t), p(r, t) and p(r, t) denote respectively the mass inside a
sphere of radius #, the velocity, the pressure and the density at a distance »
from the origin at time 7, and the expression D/ Dt denotes D/ Dt = 0/0¢ + ud/ér.
By means of cquation (5), equation (7) transforms into

D ou 2w
D—f = ‘W’<‘a} + 7)' (8)
For the equilibrium state where # = 0, 5/t = 0, we put
p=p(R), p=p(R), m=m(R),. r=R; (9)
thus equations (4), (6) and (7) are reduced to
1dp Gw dm’ , o
FaRt R =0 gg =R PYT = pp (10)

while equations (5) and (8) give merely the relations p = p’ and p = p’ in
this case.

For the radius of the shock front it will be convenient to use the same
symbol R as above. This R is a function of ¢ and connected with the pro-
pagation velocity at the front U by the relation

dR/dt = U. (11)

At the shock front (r = R), we have the following Rankine-Hugoniot
conditions:

v _ 2 [ (EY P_Ez_9>2_v_—_1
U~ y+1) (U’ p y+W\C/  y+1’
P

- 1{1+ —2_<9)2}”1 m=m
por— y=N\U ’ ’

where C is the sound velocity in the equilibrium state and is given by

C = (Zp@')”z. (13)

]
|
‘f (12)
)



Propagation of spherical shock waves in stars 439

Since we consider the case of an instantaneous explosion of energy E,
the equation of energy may be written

R/] 1 p Gm £ 1 p Gm'\,
J0<2u2+ ‘y—'—'—l;) it —)p4‘7ﬂ'2 dr—J ('y_-—_l ;7 > 4‘7TR2 dR E
(14)

In place of 7, ¢, we now introduce new independent variables x, z defined
by
7 R
R™% R
and express the quantities u, p, p, m; p’, p’, m’ as follows:

—(u—] = f(x, 2), 50 = P<—g)2g(x, 2), Pf—) = Dh(x, 2), % = Mi(x, 2), (16)

0

= z, (15)

I ’ ml
P= PG D@, - ME, m=im R, (17)
where f, g, h, ¢; P, D, M are non-dimensional new variables. Using (15),

(16) and (17), we have

d 19 D U d d
> =~ R&  Di - “{(f“x)'a‘”a'z}' (1)
We now substitute (15), (16), (17) and (18) into the fundamental equa-
tions (4), (5), (6), (8), (10), (12) and (14). 'Then (4), (5), (6) and (8) become
of af z dU 1 o 2ACOMt

Ul Rl Al Tk v e s I T (19)
10h z0h sdD  of 2f
U= mthintDa ~ "a x 20)
o1 _ 3D 5
1 Bg zdg =zdD 2zdU of
(/- g ox g8_é+Ddz+Udz <8x f)’ (22)
while equations (10) become
1 dP 2yA4?2 aM
Dzt 2M=0 = =3D PD7=1 (2
where we have used (1), (2) and (3). The boundary conditions (12) become
C\? 2y y—1/C\2
o9 = Za{=(5) - wwa = 2= H(E)
y+1 2 /C\ . _
(1, 2) = ~—i{l+ ﬁ(ﬁ)} y Lz =1, (24)
while the energy equatlon (14) gives
2
giuzs f ( hf2+ >x2 dx— 2y A*MDz? f hix dx—
0

—J'z(i —2yA2y—l—?>zz dz = 1.
o\y—1 2



440 Akira Sakurai
If we write { (th2+ ——g—>x2 dx = J, f hix dx = K,
Jo\2 y—1 o

1

0

4

j (i —2yA? M—D>zz dz = 1,
0 'y—l <

2

our equation is reduced to g—z D3J -2y A2MD=2K — I = 1,
0
& 3ID(1 + 1+ 2y A2MDz2K)!
or =% (1+1+2y 22K)L.

(25)

3. THE SOLUTION IN POWER SERIES OF %
Following the method used in the earlier paper (1953), we construct the
solution in power series of 2. At first we find the solution for the equi-
librium state expressed by (23). Eliminating M and P from (23), we have

d dD '
2 2py—2 &~ 2,27) _
dz<z Dv dz) +64%2D = 0, (26)
from which we get
D =1-A%2+ _—131"05” A+ (27

and then, from (23) and (13), P, M and C are given by

P = 1—yA2%2 + ity A%+ ..., (28)
M= 23{1 —342%%+ 39;015"A4z4+ } (29)
C2 20,2 3 4,4

i 1—(y—1)4%2 +3(y— 1) 4% + ... (30)

In figure 1, the expression (27) for the case y = 14 is compared with the
exact solution of (26) which was given by Eddington (1930).
We now assume
f(x,3) = fo+afit2otast .,
8(%,2) = go+ 231+ 3%+ 2+,
h(x, 2) = hO + zhl + 22h2 + z3h3 + ceey

i(%,2) = fp+ 20+ 2% +2%+..., |

(31)

where f,(x), g,(x), h(x), i,(x) (v =0, 1, 2, ...) are unknown functions to be

determined.
We insert expressions (27), (28), (29), (30) and (31) in equation (25),
and then obtain

J = Jo(l +za1+22a2+23<x3+ -..), (32)
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where
-1
Jy = J0<%hof§+ }fﬁ 1>x2 dx,

1

0y = J( hy f§+vfoho f1+ 1)x2 dx,

sado = | {3k fiofoho fut 2fl(h it Yom)+ b an 19

ado = [ {5hs it ofoh fut 3t fi 2o o)+
+7(f0f2 by +ho f1f2) + yéf l}xz dx, J

D
1.0
2
0.5t
' 3
| |
o) 0.5 1.0 Az

Figure 1. Comparison of approximate density distributions for y = 1'4 with exact
one. Curve 1, 1—(42)*; curve 2, 1—(A42)>+0-6(42)*; curve 3, exact
solution.

and K = Ky(1+28,+228,+23B5+...), 34

1
where K, = j hyiyx dx,
0

1
BuiKo= [ (niothoidsdv, (35)

1
8, K, = j (hyio+hyty+hyir)x do,
0 J
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and MD = 2¥(1- §A2z2+ <) (36)
_ & ,(1 2y—1 e, b _ 1.4
I—y_ng— 3 yAz+I§(4y HAZE ., (37)
Using (32), (33), (34), (35), (36) and (37), we finally get from (25)
\ .
%2 =Jy2 {1+alz+(a2—A2)zz+<a3f % }—/éi —a1A2)23+...}, (38)
and hence

2dU m, (3 11
U a'z —é—aalz (ocz—Az——z—oc )32 {2<oc3—- 3 ;‘__—1)‘*‘

+ doy (02— 3a2)}23 +...,

= —31+8,2+8,22+8;28+...),
where
8y = dou, By = Blap—A2—dad), 8y = wy— 7 ——= +huy(af = 3ay).
(39)

Equation (38) gives the relation between the propagation velocity U and the
position R = R, z of the shock front, if we know the values of constants
Jgs %y, %, ... for a given A.

Now, substituting (27), (28), (29), (30), (31), (38) and (39) into (19), (20),
(21) and (22), and comparing the coeflicients of the same powers of z on both
sides of (19), (20), (21) and (22), we get the following system of equations:

for the term independant of =

7

' _3f 8o
(fo—x)fo—3fo = — m),
h!
(=)0 = ~fi- 2 , o)
(fo—x)f,f’) = 3= 2
if = 3x2hy;

for the first power of z
(o a)fi+ ,, -8 = G—ff+ g° 2+ 3o,

o) +fi = =(5 + )fl » )
2y

(o —x)<g) +of = —<é+7)f1—§—:+381,
= 3x%h,; J
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for the second power of

<fo—x>fé+;},—0g; — —Q+ffet g" w LRE VL
i~ fit sao ¥ h7<g 2 2)
GomE) +5s = — (52 + 2)p-2p2 +2a2

+<f°‘x>a(%>‘<z,>fl+<h‘i>2’ @

G (E) +ofi = ~(8+ Z) 28 12404 3,4
0 0

U B8 - () e (8)

iy = 3x%(hy—2A4%h);

Jor the third power of =
4 1 /
(fo—2)i+ g5 = —(G+folfs+ h +883 fo+
vho

PR , hy , ,h?
= f1+38) +(—fo+ +26,) + h2<g2 &7 o +£0 h2> +

T
ool o5 = (5 D

woofaie) - (- %)(%)'}-fl{(h’—z)' W) ) o

&) " &
&1 g~z>' <g% gz)(é’)} <g2> g1<g1>'}

+(fo—x)422(22) ~ (2] -~ 22 s1a1) L

o ){go<go & aol\ao) I o) Ta\es
_ g.x) _& <s; _3g_2>

fz(é’o &o\g &/’

1y = 3a? <h3— §A2hl> ;

where the primes (‘) denote differentations with respect to x.

From the boundary conditions (24), we have in a similar manner

. 2 2 +1 .
) =g e = k) =723, Wl =1 (44)

J
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fi(1) = 0, a(l) =0, hy(1) = 0, (1) =0, (45)
1) =0,  g(1) =0, hy1) = 0, i(1) = 0,  (46)

2 -1 2y +1 . B

f) = = e &) = = Tpde (1) = = gl (1) = 0
(47)

The first step in the solution of the problem is to solve the system of
differential equations (40) about fy(x), go(x), A(x), ie(x) with the boundary
conditions (44), and to insert this solution in the first equation of (33).
Then we have the first approximation to the solution in the form

U
u= Uffx) p= M)mmpwmwm=mm

(%‘)) = J, %% (48)

Since 7, enters only in the fourth equation in (40), we can find f,, g,, A,
separately from the first three equations. It is clear that this procedure is
precisely the same as that of the first approximation in the case of a
uniform pre-explosion state, which was first developed by Taylor (1950).
The solutions fy(x), go(x), ho(x), J, were, in the previous paper (1953),
written as fO(x), g®(x), Kx), J,. The value of J,fory = 1-4 is 0-596,
and some values of f, g, and A, are shown in table 1.

The second step is to find the functions f,(x), g,(x), hy(x), #;(x) and a
constant 8,. For this purpose we use the system of differential equations
(41), with the boundary conditions (45) and the integral condition (the
second equation of (33)) with the relation 8, = 3o, from (39). The equations
(41) and the integral condition are, however, linear and homogeneous, about
fu &1> By 13, 8,, and so we have simply

fl@) =0, g(x) =0, h(x)=0, i(x)=0, & =a=0. (49)

Equations (49) lead to a simplification of the equation for the third step,
and we get from (42) and (46)

(fo—x)f2+ hgz = < +fo)fz h2+ 2f° 2
PENTSRVENL I T J0
(fo—x)(%)' +ofy = —(éi” + 2—>f2—2§—: +242+38,, |

g0 X

3x2<h2 - % A%,),

fo1) = gx(1) = hy(1) = 3(1) = 0, )

(50)

./
(£
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and from (33) and (39)
~1 1
ayJy = Jo(%‘}’hzfg""}’fohofz"'y_lgz)xz dx, (1)

8y = (ag— A2). (32)

By means of (50) and (52), we can find the functions fy(x), g5(%), Ay(x), (x)
and the constants «,, 8;. The solution is given below in §4.

Equations for the fourth step are also simplified by means of (49), and
we get from (43) and (47)

(fo—2)fs+ & = — é"‘f(; f3+§ih3+§83f0, ]
h 2

(o)) +55 = = (7 + 2)fi-33
(fo—x)(g—z)' +yfs = —(% + ;)fs—%j +385, L (53)
i, = 3a%hs,
A1) = = =576 Loy 1) = - 22,
15(1) = 0, J

and from (33) and (39)

1 1
gy = fo (‘}éhs fo+vho fo fa+ ),Tlg3>x2 dx, l
' (34)
1
o |

W =

O = og—
Now we put
Js=Jox—fo)bs, &3 =7Jo&ots ks =Johoxs 83 =JyAs. (55)
Then we get
_ _ ’ - r1 3 fO
=ty + By = — @i+ Do (fi+ 5 222 ) x

xGa—th) + 3 2

(x—f)(—¢s+x3) = 3($s+ xa),

(2=l —vb5+5) = 3{(y— Debs +¥h— s}, > (56)
1y = 3J o x%hy X3,
2 -1 ' 2.
o) = = S50 () = =T, ) = - o2 i(1) = 0,

1 go Y g2 2 2 _ 1.1
|, (o ol = o+ St 5fihaxs pt de = Moot 5 o,

where we have used equations (40) for f;, g,, %,.

J
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By comparing this system of equations (56) for ¢s, i3, X3, 23, A; With that
for ¢, 4, x, A, expressed by (2),(3), (4),(5) and (6) in the previous paper (1954),
we can find that in the case of « = 2 (spherical wave) they are precisely the
same except for the equation for ;. 'Then we get
$a(2) = $(%), (¥ =), x(@=x(x), A=A (57)
The value of A; for y = 1-4is —1-918, and some values of ¢, 3, x5 are also
given in table 1.

X Jolx) go(x) Aol (}53(30) Ps(x) X3(%)

100 0-833 1167  6-000 —5-000 —0-143 —5-000

0-95 0-751 0-760 2-464 —3-941 0-779 0-879

090 0685 0-595 1-234 —3-603 0-475 2:567

0-80 0-584 0-471 0-392 —345 —0-18 3:32

0-60 0429 0427 0041 — ~0-51 —

0-00 0-000 0-426 0-000 —35 —0-53 3-5
Table 1

We have now arrived at the fourth approximation to the solution,
including the terms up to 2% Since U2 oc 2%(1 +...) by (38), this fourth
approximation corresponds to the second approximation of the previous
paper (1954); because, in the former case, the solution was expanded in
powers of y = (C/U)?, where C denoted the velocity of sound in the uni-
form atmosphere. The fact that we can express the coeflicient of 22 in the
present solution in terms of the coeflicient of y in the previous result is due
to this reason. But it must be remarked that the errors involved in the two
approximations are not the same, since the error in the present case is
O(z*%), while in the previous case it is O(y?), i.e. O(2%). Thus, to have the
same error, we must proceed to the sixth approximation. The non-uniform
pre-explosion state, caused by gravitation and expressed by the constant 4,
does not affect the terms in 2° and 23, but appears separately in the term of
2% in the fourth approximation. In the case of 4 = 0, equations (50) and
(52) become homogeneous, and the term in 2% vanishes as in the case of the
term in z; the solution then reduces to that in the case of a uniform pre-
explosion state.

4. SOLUTIONS FOR f5, go, hy, 0y

We now solve equations (50) and (52) to the third approximation. The
procedure is similar to that of the second approximation (the term in y)
developed in the previous paper (1954). We put

fo = Ax—fo)bo 82 = Aoty By = AhyXe  ap = Aoy, (58)
so that (50) and (52) are reduced to

’ &o ’
—(x—fo)pa+ Tiolx—1y) y

— (L_2f & _fo_a__
= (3 2fo)¢2+yh0(x__fo)(X2 ¢z)+x_f0(z 1), (59
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(x—fo)(—dg+x2) = 3da+2x2—2, (60)
(x—fo)(—vba+s) = 3(y— D)y + 2hp— 20y, (61)
iy = 3A4%y x*(xy— ), (62)

$o(1) = Pa(1) = xo(1) = ix(1) = 0, (63)

1
ouly = [{ofolas—fobet Bt Y fi st s, |

8, = 3A4%(3,— 1),
where we have used (40). Since 7, appears only in (62), we can exclude it.
The problem is then to solve the system of differential equations (59), (60)
and (61) for ¢, ,, x, with the boundary conditions (63), and to put this
solution, which includes o,, into equation (64) and determine o,. It is
remarkable that 4 has no role in this process.

Just as in the previous papers (1953, 1954), we have an intermediate
integral from equations (60) and (61). Let us perform the operation
(57 —3) x (60)—5x (61); we have

35— 54+ (57— 3k = 203~ o+ (S =3+ Soa— Sy +3},
Integrating this and inserting the condition (63) to determine the integration
constant, we obtain the relation

(64)

3ho— Sthy+ (5y = 3)xp + 505 — 5y +3 = (Soy—5y+3) exp< | xz_d; > (65)
Eliminating ¢; from (59) and (61), we have . ’
iy = agy+ by +cxy +eoy 1 d, (66)
where
-1 o

a= —<2f5—%+37—y—>f, a= -2

3 S 2) < fo 2)

b= — + =20 4 Zf = + 2,
(Brzsneo)n o= (L)
3 f > x~fo { (x—fo)? }‘1

= + 5 —1f, = hil— ——2ph .
c <f0 2x—f /i f=v 2 0 Z 0
Now we split up ¢y, ,, x, into two parts
bs = a1+ 05 bog, ho = thay + g oy, X2 = X211 03 Xo2 (67)

and substitute these in (66), (61), (65), (63), (64). The equations split up
into two independent systems for ¢y, a1, Xa1 and Bag, an, X2 Tespectively,
viz.

Pa1 = gy + by + Cxoy + 4,

, 1, 1
¢ = ;/l:‘/‘m - ;’:ﬁ) B3y =)o + 2‘/‘21}],

-1 = 2dx
X = 53 = Sim)+1-exp( [ Z50),

with da(1) = (1) = xa(1) = G, J

(68)

I
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and Pog = Aoy + bibgy+ cxaa+ ¢, ]
’ 1 4 1
bop = ’"l:‘/lzz = —7 B — Do+ 2 — 2}]’ JI
Y x~fo
1 z 2 dx (6%

X2z = ‘5'}1———3 {5 exp(jl x —fo) -5- 3¢22 + 5‘1122}’
with $aa(1) = thop(1) = xae(1) = 0.
Moreover 0pdo = Jitopdy, or oy = Jif(Jo—Jy), (70)

1
where  Jy = [ {ufohos ~fbu+ £ dunt Bfe oot

1
T = [ (oo~ fobbot B+ b o .

Fory = 1-4,(68)and (69) wereintegrated numerically from x = 1 with the
initial values ¢y; = ) = X1 = g9 = thpg = X2o = 0. Fromx = 1tox = 0-96,
the Runge-Kutta method was used, taking the steps of the numerical
integration as 0-02. In the remaining part of the range, the Levy method
was applied, again with a step of 0-02. Inserting these values of ¢y, s,
X215 Pazs Pas Xez into (70), we get the value

op = 0182, with Jy = 0596, A, = —1.918. (71)

ot

2 »8
O

O

| ul O
0.6 0.8 [.O

=t
R

Figure 2. The solutions ¢,, iy, x; for y = 1-4.
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Using this value of 6, ¢y, s, x, Were determined finally by (67); they are
tabulated in table 2, and are shown in figure 2.

x da(x) () xa(x)
1-00 0-000 0-000 0-000
0-98 0-037 0-081 0-232
096 0-061 0124 0-386
094 0-076 0-146  0-495
092  0-086 0-157  -572
0-90 0-091 0-159 0:629
0-88 0-094 0-158 0-671
0-86 0-097 0-155 0-704
0-84 0-097 0-151 0-730
0-82 0098 0-147  0-752
0-80 0-098 0-143 0-764
078  0-10 0-14 0-78
0-76 0-10 0-14 0-80
0-74  0-10 0-14 0-81

0-72 0-13 0-81

0-70 0-13 0-82

0-68 0-13 0-82

066 0-82
Table 2

5. VELOCITY-DISTANCE CURVES AND TIME-DISTANCE CURVES
Inserting (49), (55), (57) and (58) in equation (38), we get

2
<—CU°> = Jo 231+ (0g— 1) A2+ Ay 23 + ..}

By use of the values .Jy, o5, A; given in (71), and with R/R, in place of z, this
equation becomes, for y = 1-4,

Co\* _ o506 B woaef BN _ 114 BV
<U) ~ 0596(7{;) {1—0 824 (1-2—() ~1 14<R0> }

U R\-3i2 R\2 R\s
= =1 fakl . af . =
or C 130<R0> {1+o 414 <R0> +0 57<R0> } (72)

Velocity—distance curves (U-R curves) given by (72) are shown in figure 3
for A2 =0, 1, 2, 5 and 10.

We can see in figure 3 that A has the effect of preventing U from de-
creasing, and this effect increases with larger 4 as expected. Itis interesting
to consider U/C, the strength of the shock wave, which is obtained by
multiplication of (72) and (30). In the case of y = 1-4, we have

(o) = () (@) - ooelz) - 2aw) - n(z) -

U _ RN 06142 BY L os7( RY
or = 130(?2‘0/ 1+0-614 <§5) +0 57<R0> } (73)

F.M. 2G
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from which we can see that A is more effective in maintaining the strength
of the shock wave.

Using the expressions (73) and (12), we can deduce relations between
the radius of the shock front R and quantities such as pressure and density
at the shock front. To obtain the most interesting of these relations, we
consider the temperature T at the shock front; we have

- MG )

where 7" denotes the value in the equilibrium state.  Since T"/T, = (C/C,)?,
where T, denotes the value of T’ at the centre, we have finally

T R\[, o /R\ (R
T - 0-326<§0> {1+0 824 <E> +404<§;> +} (74)
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Figure 3. Velocity—distance curves for 42 = 0, 1, 2, 5 and 10.

In this case, A does not have so much effect. The distance-time relation
can be obtained from an integration of (72) with use of the relation (11).
This gives

1 /R R\z R\’
= e — — (- 2f — —0- i
Co dt 1,30<R0> {1 0-414 <R0> 057<R0> ...}dR

and we get

o - osos(z) {1-o2(g) o2(g) -}
= = (0-308] — 1—-02342% =] —027({ — 1 ... 75
R, &) 1 R R (73)

This equation is represented in figure 4 for 42 =0, 1, 2, 5 and 10.
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Figure 4. Time—distance curves for A2 = 0, 1, 2, 5 and 10.

If we combine (75) and (74), we can get a relation between the temperature
T and the time 2.

6. DISTRIBUTION OF VELOCITY, DENSITY AND TEMPERATURE

The velocity u, pressure p, density p and temperature 6 behind the
shock front are given by (16), (31), (27), (28), (72), (73), (49), (55) and (58),

that is, u U
= o A% 05965}, |
" r (76)
F = 1:30592(1 4 0-414% + 0-575% + .., J'
0
2
b =P(%> g0l + A%y + 0-5965%0 + ., |
Do !
P=1-144%2+ .., "> (77
U\? f
(?7 = 16831+ 122422+ 1- 1453+ ...}, |
J
;
P _ 2,2 . "3 v
P Dho{l + A%2%yy +0-59623y, + .4, 1( (78)
D =1-4%2.., )
g P P
o= X =, 79
Ty, po  » 7)
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A special interest attaches to the variation of p and p with time, as shown in
figures 5 and 6 for the case of A% = 2. In figure 5 distributions of p/p,
when 2 = R/R, = 0°1, 03, 05, which correspond to Cyt/R, = 0-001, 0-014,
0:046 respectively, are shown with the initial pre-explosion distribution
D =p'jp,=1-222. We can see that p/p, increases to several times the
initial value D at the shock front, and decreases to zero toward the centre.
This decrease is so rapid that there is always a region of almost vanishing
density near the centre, and this region is also expanding with time. The
same kind of distributions of 23p/p, for the same values of z and the initial
distribution P = p’/p, = 1 —2'82? are shown in figure 6. In this case, the
increase of p/p, from P at the shock frontis very large, especially for small 2,

£
el
2
s .
[
| - o 1
o 0-1R% 0.3R, 05/, R

Figure 5. Distributions of density for 42 = 2 at various stages. Curve 1, initial pre-
explosion distribution D; curve 2, distribution of p/py at 2 = R/R, = 0-1;
curve 3, distribution of p/p, at 2 = R/R, = 0-3; curve 4, distribution of p/p,
at 2 = R/R, = 0°5.
3P

ZP-O,P

2.0

o 01Re 03R0 O5Re ny R

Figure 6. Distributions of pressure for 4> = 2 at various stages. Curve 1, initial pre-
explosion distribution P; curve 2, distribution of 2%/p, at 2 = R/R,=0-1;
curve 3, distribution of 2%p/p, at 2 = R/R, = 0.3; curve 4, distribution of
2°p/py at 2 = R/Ry = 0°5,
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and is about two thousand for 2 = 0'1. The value of 2%p/p, is shown in
the figure, though P is depicted without change. Corresponding to the
region of vanishingly small density, we now have the constant pressure
region of about the same size. 'This value of constant pressure changes
rapidly with z, being roughly proportional to 272 or (U/C)2. 'The distri-
bution of temperature, which can be obtained from (79), using the above
values of p/p, and p/p,, then has a region of almost infinite temperature
corresponding to the above regions.
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